

JOIN THE PATH
TO EXCELLENCE

voestalpine Böhler Welding
www.voestalpine.com

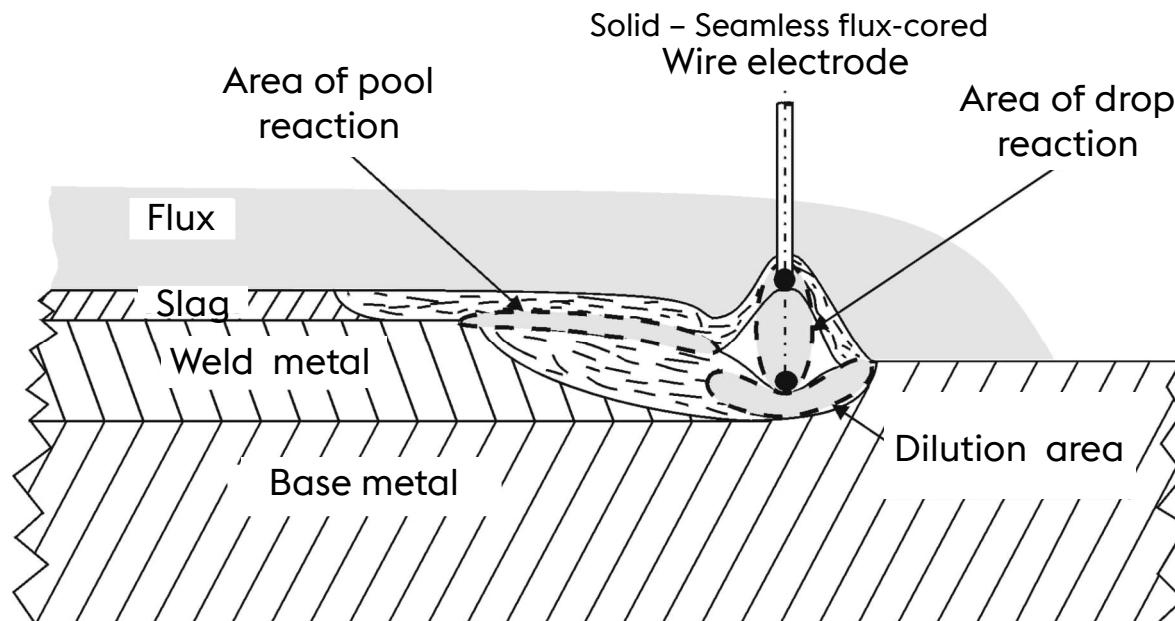
voestalpine
ONE STEP AHEAD.

SAW solution for 40% increased productivity
without significant investment in equipment

voestalpine Böhler Welding
www.voestalpine.com

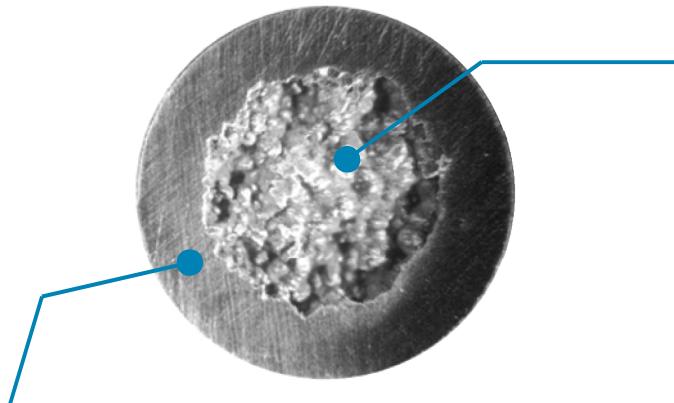
voestalpine
ONE STEP AHEAD.

Agenda



1. Seamless SAW wire (cored)
 - a. Production route
 - b. Features, product advantages and customer benefits
2. diamondspark S 56 HP + UV 400
3. Application testing
 - a. Penetration Y-groove
 - b. Procedure optimisation : example in 20 mm plate
 - c. Two-Run in thin plate (I-preparation)
4. Multi-wire
5. Product range
6. Summary

Product details :
Seamless SAW wire (cored)


Submerged Arc Welding (SAW): Operating principle of the process

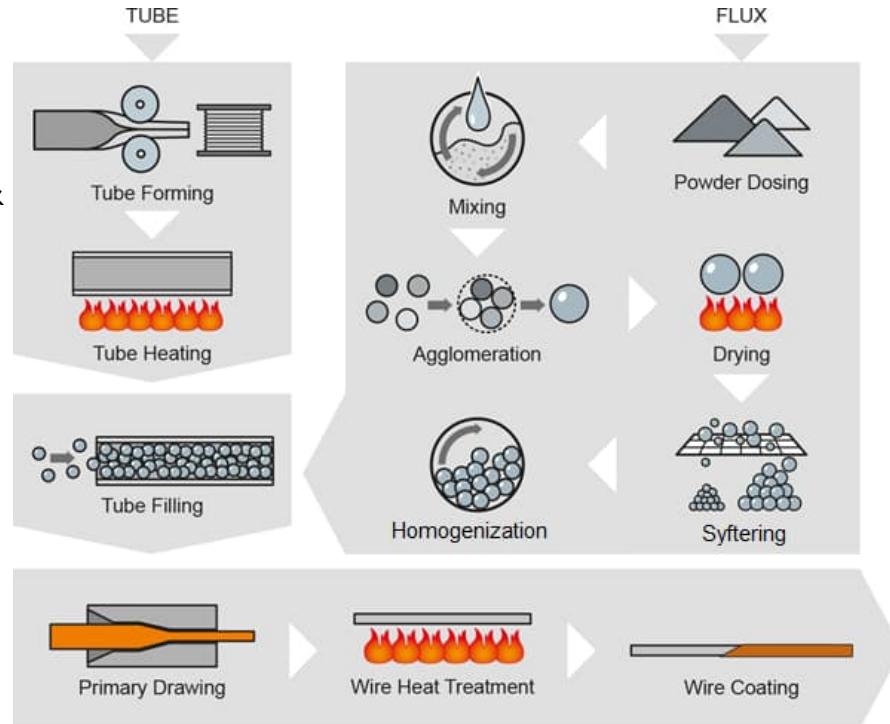
Differences with solid SAW

- Wire speed
- Metal transfer
- Flux consumption

Seamless SAW -wire

Coppered steel tube is responsible for

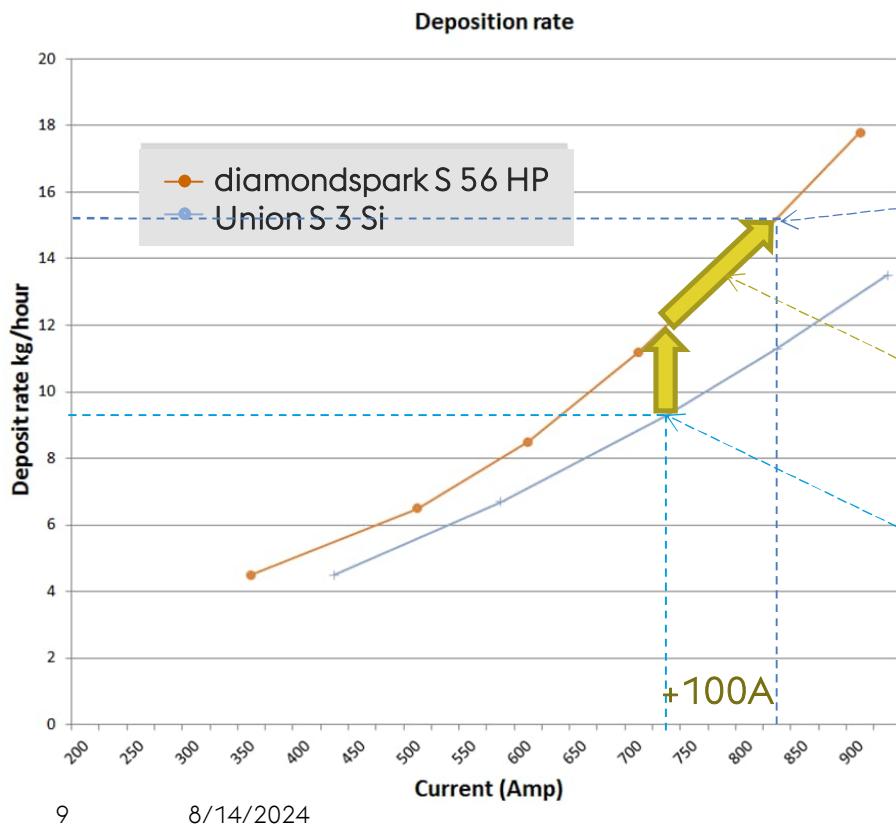
- Shape stability
- Electrical conduction
- > 80% of the chemical composition


Flux filling of mineral and metallic components
Agglomerated.

- Weldability and weld appearance
- Mechanical properties (weld metal composition)
- Slag formation (~5 wt%)
- 95 wt% total weld metal recovery

Production route – Seamless SAW wire

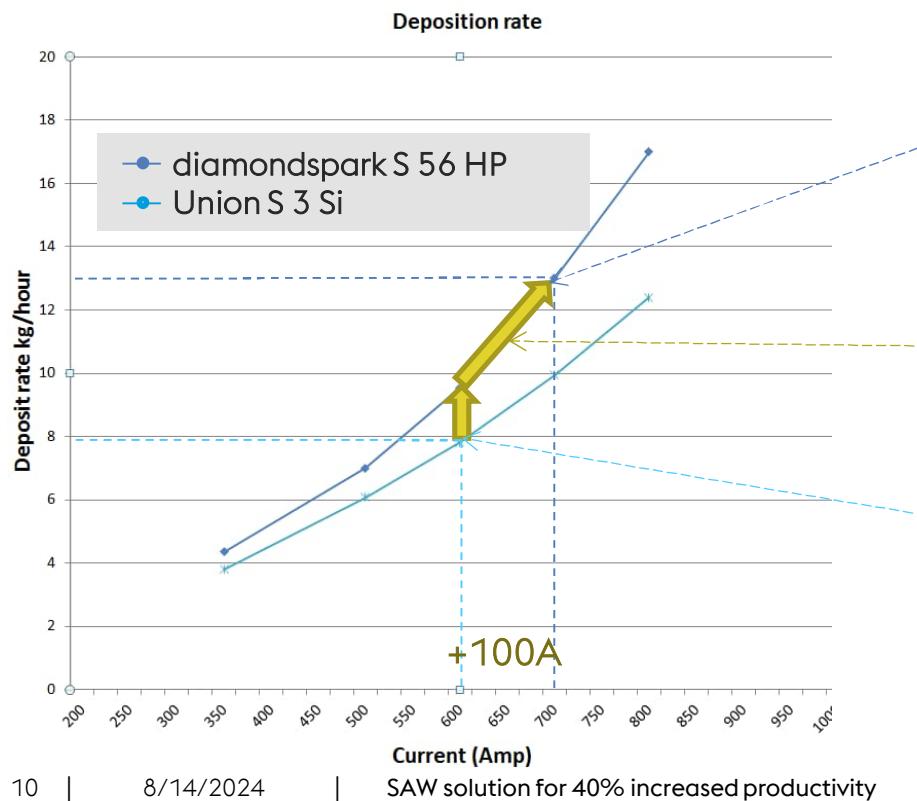
- Strip, tube forming & welding
- Annealing, cleaning, calibrating
- Flux production (dry mix & agglomeration & grain size filtering)
- Filling process
- Draw from a “filled tube” to “wire”
- Annealing & Dehydrogenation
- Coppering
- Final drawing
- Spooling
- Many production steps



Benefits seamless SAW cored wires

Product feature	Benefit
Higher wire speed (versus solid SAW)	Higher deposition rates => arc time saving => cost saving
Better bead appearance and better slag detachability	Less time for slag removal, low risk for slag inclusions
Possibility for higher current and /or welding speed	Reduced arc time / reduced number of passes time saving => lower costs
Lower heat input / colder process (relative low cooling rate t8/5)	Reduced restraint / distortion Good mechanical properties
Lower flux consumption (-20/-30 %)	Lower costs
Basic flux-cored wire with optimized chemistry => High toughness level	Low risk of failing mechanical properties Ability to use flux with lower basicity index (=better welding characteristics)
Different penetration profile (wider)	Lower risk of burn-through and misalignment (root passes, thin materials, poor fit-up)
Seamless (form stable and coppered)	High process reliability Good current transfer No moisture pick up and extended shelf life (compared to folded wires)

Deposition rate diamondspark S 56 HP – 4,0 mm

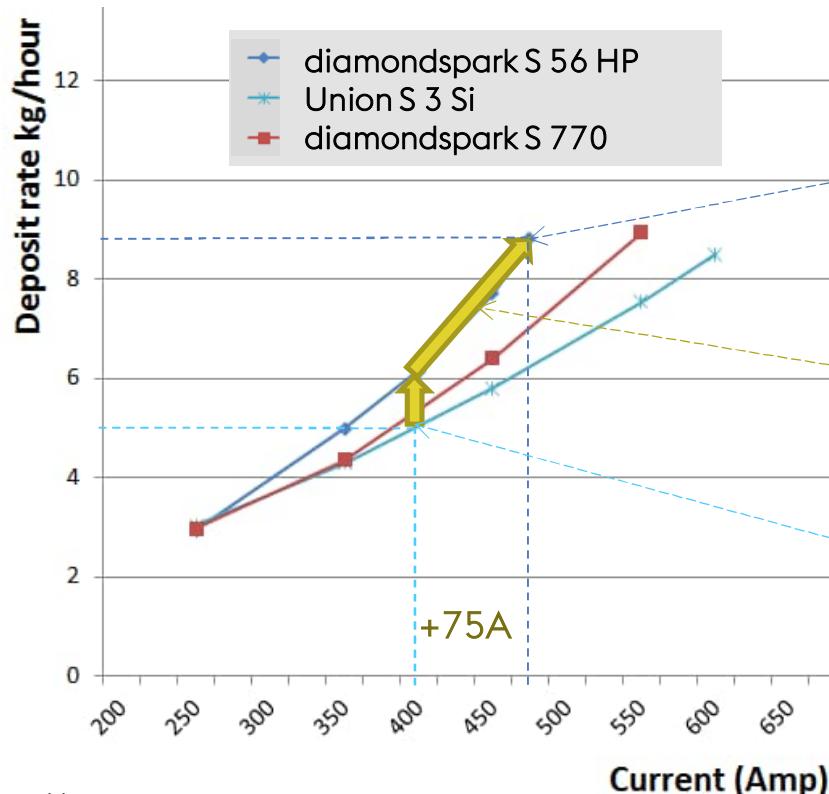


15,1 kg/hr at 825 Amp
Dep.rate => +66%
Arc time saving (= 1-1/1,66) = 40%

Due to smoother arc : mostly possible to apply higher current vs solid wire (better welding characteristics).

9,2 kg/hr at 725 Amp

Deposition rate diamondspark S 56 HP – 3,2 mm



13 kg/hr at 700 Amp
Dep.rate => +66%
Arc time saving (= 1-1/1,66) = 40%

Due to smoother arc : mostly possible to apply higher current vs solid wire (better welding characteristics).

7,8 kg/hr at 615 Amp

Deposition rate diamondspark S 56 HP – 2,4 mm

8,85 kg/hr at 475 Amp
Dep.rate > +77%
Arc time saving (= 1-1/1,77) = 43%

Due to smoother arc : mostly possible to apply higher current vs solid wire (better welding characteristics).

5,0 kg/hr at 400 Amp

diamondspark S 56 HP + UV 400

Datasheet

diamondspark S 56 HP – UV 400

Mechanical properties

High tensile and charpy toughness :
 » Even with very high heat input

Typical analysis				
wt.-%	C	Si	Mn	
all-weld metal	0.06	0.3	1.6	
Mechanical properties of all-weld metal - typical values (min. values)				
Condition	Yield strength $R_{p0.2}$ MPa	Tensile strength R_m MPa	Elongation A ($L_0=5d_0$) %	Impact energy ISO-V KV J -60°C -40°C -50°
u, DC+, 1,8 kJ/mm	490(≥ 460)	560 (530-680)	28 (≥ 22)	110 (≥ 47) 160 (≥ 47)
u, DC+, 3,2 kJ/mm	460	540	26	120 100
a, DC+, 1,8 kJ/mm	460 (≥ 420)	540 (500-650)	28	175 (≥ 47) 190 (≥ 47)

u untreated, as welded ; a annealed 1 hr 620°C

Operating data		Dimension mm		
Polarity	DC + / AC	2.4	3.2	4.0

Approvals	
TUV (19505), DB (51.052.02, 52.052.02), CE , ABS (5YQ460M H5; 4Y400T H5), BV (4Y40TH5 ; 5Y46MH5), DNV (IV Y40T H5 and V Y46M H5), LR	

diamondspark S 56 HP - UV 400

Seamless basic flux cored SAW wire/flux combination, mild steel

Classifications

EN ISO 14171-A	EN ISO 14171-A	AWS A5.17 / SFA-5.17	AWS A5.23 / SFA-5.23
S 46 6 AB TZ3 H5	S 4T 5 AB TZ3 H5	F7A8-ECG / F7P8-ECG	F7TA6G-ECG
Multi-run	Two-run	Multi-run	Two-run

Characteristics and typical fields of application

diamondspark S 56 HP - UV 400 is a wire-flux combination for submerged arc welding of unalloyed structural steels and fine-grained structural steels up to MSYS = 67 ksi. diamondspark S 56 HP is a coppered seamless basic flux cored wire with a good resistance to deformation (wire feed rollers) and is very easy to straighten to ensure the best current transfer with a low contact tip consumption. The wire is not sensitive to moisture pick up. The weld metal demonstrates good toughness properties at low temperatures, which gives the fabricator the possibility to weld with high heat-input at high welding speed resulting in very high productivity: e.g: single wire 1/8", 800 Amps (~37 lbs/hour) with a good bead appearance, nice fusion and good slag detachability. Also suitable for 2-run technology where the combination shows an improved welding behavior (nicer bead appearance and higher welding speed) with good charpy toughness. **UV 400** is an agglomerated, aluminate-basic flux. Its characteristic is a low Silicon and a middle Manganese pickup. It can be used on AC and DC. The good weld ability and the good mechanical properties offer a universal application. For information regarding UV 400 flux see our detailed data sheet.

» Also high toughness in two-run application

voestalpine

ONE STEP AHEAD.

UV 400 – Aluminate-Basic

UV 400 aluminate-basic type				
Classifications				
EN ISO 14174				
SAAB 1 67 AC H5				
Characteristics and typical fields of application				
UV 400 is an agglomerated flux of aluminate basic type designed for joining and surfacing applications with general-purpose structural steels, fine grained structural steels, boiler and pipe steels. The flux is characterized by its low silicon and moderate manganese pickup. It can be used on DC and AC. Its good welding characteristics and the technological properties of the weld metal produced with different wires permit universal use. This flux has also been available on the market as "BÖHLER BB 400".				
Flux properties				
Polarity	DC / AC			
Basicity index (Boniszewski)	1.8 (wt%)			
Grain size (EN ISO 14174)	3 – 20 (0.3 – 2.0 mm)			
Flux consumption	1.0 lbs per lbs wire			
Redrying	570 - 700°F. 2 hrs min.			
Diffusible hydrogen (ISO 3690)	≤ 5 ml / 100gr (as produced / re-dried)			
Composition of sub-arc welding flux				
	CaO+MgO	CaF ₂	Al ₂ O ₃	
wt. %	53	17	21	
Typical wires to combine				
Name	EN ISO	Class	AWS / SFA	Class
Union S 2	14171-A	S2	A5.17 / -5.17	EM12
Union S 2 Mo	14171-A	S2Mo	A5.23 / -5.23	EA2
Union S 3 Si	14171-A	S3Si	A5.17 / -5.17	EH12K
Union S 2 Si	14171-A	S2Si	A5.17 / -5.17	EM12K
Union S 2 NiMo 1	14171-A	SZ2Ni1Mo0.3	A5.23 / -5.23	ENi1
diamondspark S NiCu1	14171-A	T2Ni1Cu	A5.23 / -5.23	ECG
diamondspark S 56 HP	14171-A	T23	A5.17 / -5.17	EC1
diamondspark S 550 HP	14171-A	TZ3Ni1Mo	A5.23 / -5.23	ECNi5
Packaging				
Type	Weight			
BIGBAG DRY SYSTEM	2200 lbs			
DRY SYSTEM	55 lbs			

14

Why UV 400 ?

UV 400 versus fluoride basic flux UV 418 TT:

- » **Better operational characteristics** (slag release and bead appearance)
- » Higher current carrying capacity
- » Higher welding speed

UV 400 versus rutile flux UV 306:

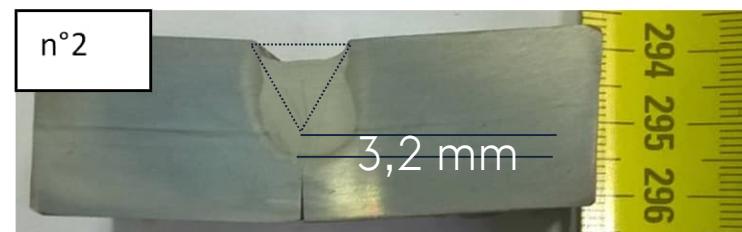
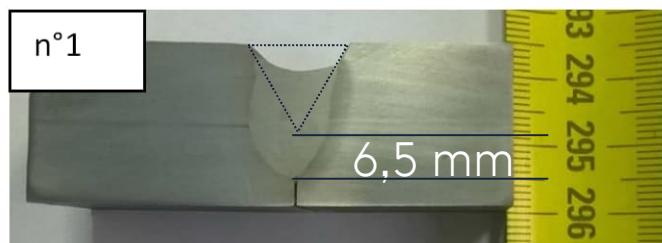
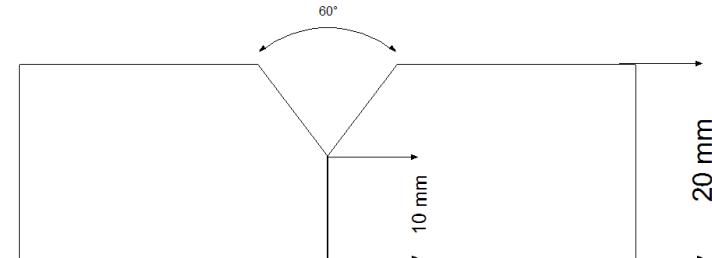
- » Better toughness
- » Lower maximum welding speed (mono-pass)

voestalpine

ONE STEP AHEAD.

Main SAW combinations

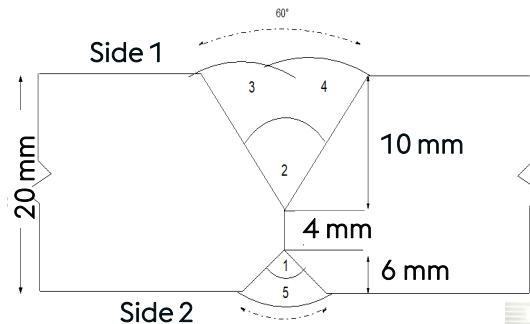
Wire grade	SAW wire name	Flux name	Flux Type	Min YS [MPa]	Charpy Multi Run [J]	Charpy 2-Run [J]	Main Application	Joint prep
EM12K/S2Si	Union S 2 Si	UV 408 TT	AB	420	-50	-30 / -50	Multi-run and 2 run	I, Y, X
EH12K/S3Si	Union S 3 Si	UV 418 TT	FB	460	-60	-30 / -50	Especially multi-run	(I), X, Y
EC1/T3	diamondspark S 55 HP	UV 418 TT	FB	460	-60	-30 / -50	especially multi-run; high deposition rate	(I), X, Y
ECG/TZ3	diamondspark S 56 HP	UV 400	AB	460	-60	-60	2 run and multi-run High deposition rate	I, Y, X




Application testing

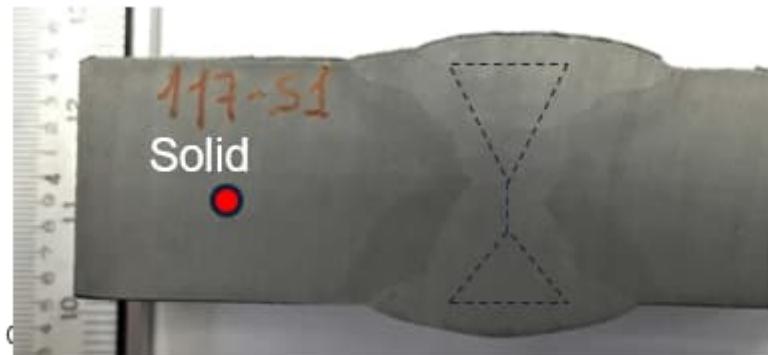
1 - Penetration in Y-groove 60°

Test	SAW Wire	Diam	Amp	Volt	Speed	Penatration
n°	type	mm	A	V	cpm	mm
1	Union S 3 Si	3.2	600	29	45	
2	S 56 HP	3.2	600	29	45	

Flux UV 418 TT


2 aspects for less penetration depth with diamondspark S 56 HP (compared to solid SAW wire):

- Wider arc (= less concentrated)
- ~30% more filler metal = especially in narrow weld preparation / small angle


=> Increasing the welding speed will decrease the difference

2 - Application test 20 mm plate Existing WPS based on solid SAW

Wire	Diam	Flux	Plate side	Bead number	Electrode size (mm)	Type of current	Current	Voltage	Welding speed cpm	Heat input kJ/mm
Union S 2 Si (EM12K)	4 mm	UV 400	1	2	4,0 SAW	DC+	650	28,0	45	2,4
Diamondspark S 56 HP	4 mm	UV 400	1	3-4	4,0 SAW	DC+	550	32,0	45	2,3
			2	1	1,2 GMAW	DC+	260	28,5	39	1,1
			2	5	4,0 SAW	DC+	730	31,0	45	3,0

2 - Application test 20 mm plate Charpy toughness, same parameters

Little over-thickness

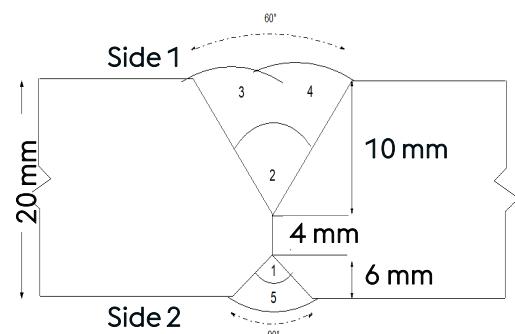
Charpy toughness (-50°C)

- Side 1 : 69 J
- Side 2 : 22 J

Too much over-thickness

Charpy toughness (-50°C)

- Side 1 : 123 J
- Side 2 : 48 J


2 - Application test 20 mm plate

Optimisation (welding parameters) with diamondspark S 56 HP – UV 400.

Question :

- » Do you think it is possible to achieve arc-time saving > 40% ?
- » Also with same or better charpy toughness?

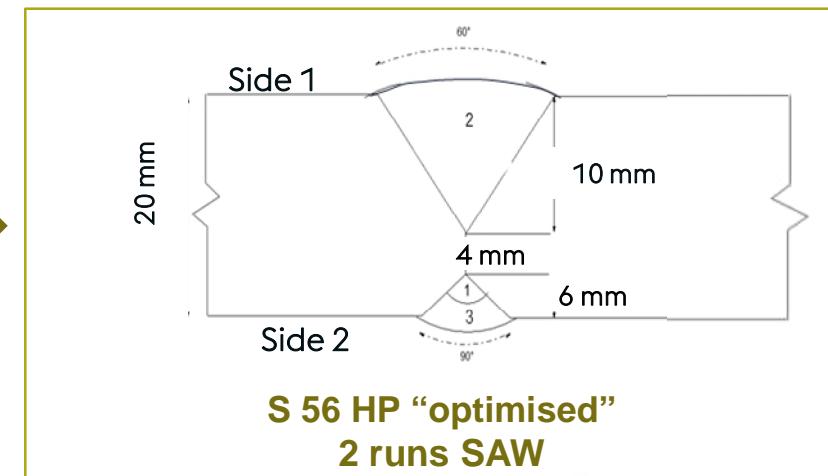
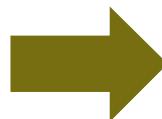
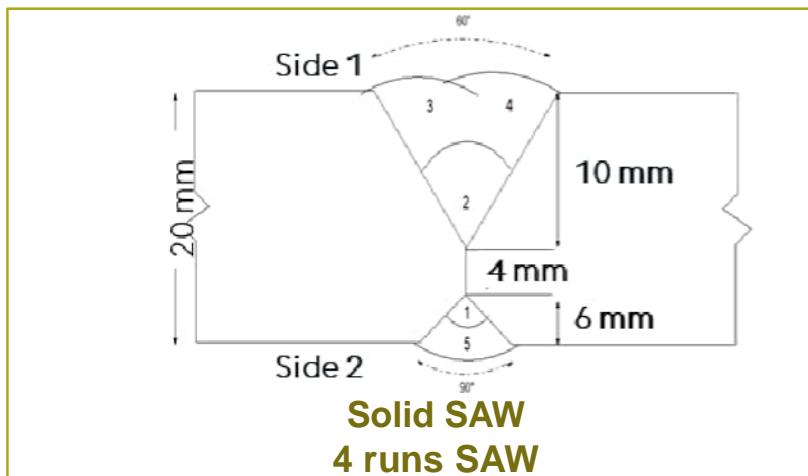



yes / no
yes / no

Plate side	Bead number	Electrode size (mm)	Type of current	Current	Voltage	Welding speed cpm	Heat input kJ/mm
1	2	4,0 SAW	DC+	650	28,0	45	2,4
1	3-4	4,0 SAW	DC+	550	32,0	45	2,3
2	1	1,2 GMAW	DC+	260	28,5	39	1,1
2	5	4,0 SAW	DC+	730	31,0	45	3,0

2 - Application test 20 mm plate Optimisation of the WPS

Optimise parameters for S 56 HP for
» Better penetration
» Reduced arc time

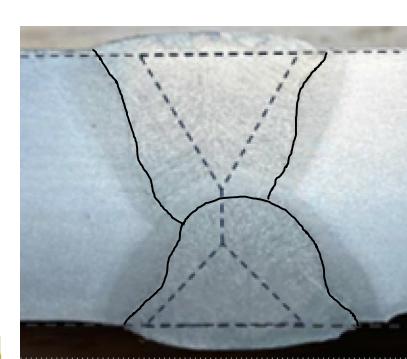
2 - Application test 20 mm plate Optimised parameters

Plate side	Bead number	Electrode size (mm)	Type of current	Current Amp	Voltage Volt	Welding speed cpm	Heat input kJ/mm
1	2	4,0 SAW	DC+	650	28.0	45	2,4
1	3-4	4,0 SAW	DC+	550	32.0	45	2,3
2	1	1,2 GMAW	DC+	260	28.5	39	1,1
2	5	4,0 SAW	DC+	730	31.0	45	3,0

Plate side	Bead number	Electrode size (mm)	Type of current	Current Amp	Voltage Volt	Welding speed cpm	Heat input kJ/mm
1	2	4,0 SAW	DC+	800	29.5	50	2,8
2	1	1,2 GMAW	DC+	260	28.5	39	1,1
2	3	4,0 SAW	DC+	730	32.0	65	2,2

60% time saving

2 - Application test 20 mm plate


Resume : **60% time saving** and **increased toughness**

Solid SAW
4 runs
(45 cpm ; 18 ipm)
1 mtr weld :
= 8,9 mins arc time

S 56 HP "optimised"
2 runs
(50&65 cpm ; 20&26 ipm)
1 mtr weld :
= 3,5 min arc time
= 5,4 minutes less
60% arc time saving

Charpy toughness (-50°C)

- Side 1 : 69 J
- Side 2 : 22 J

Charpy toughness (-50°C)


- Side 1 : 89 J
- Side 2 : 71 J

Approvals :

Two-run and multi-run

Approvals

TUV (19505), DB (51.052.02, 52.052.02), CE, ABS (5YQ460M H5; 4Y400T H5), BV (4Y40TH5 ; 5Y46MH5), DNV (IV Y40T H5 and V Y46M H5), LR

by voestalpine Böhler Welding

2-Run welding technique in thin plate

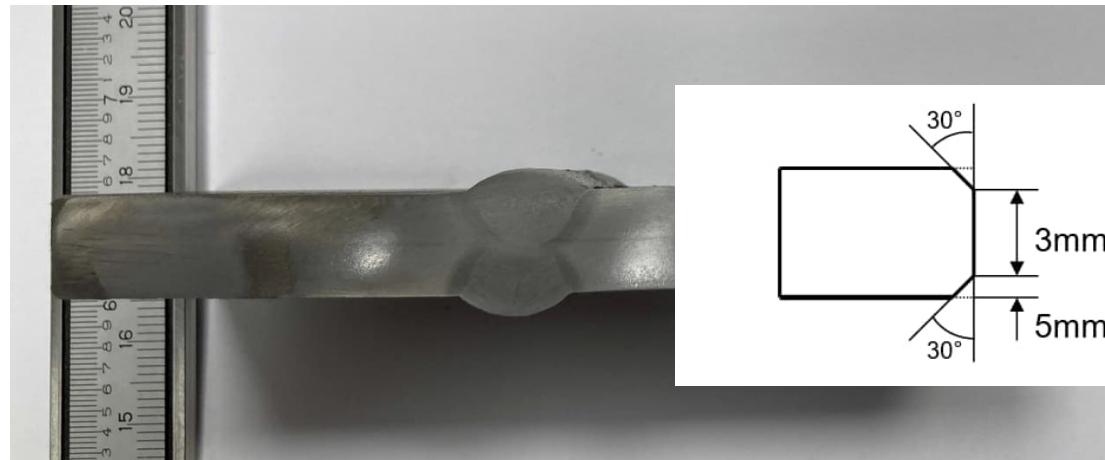
Example : two-run - 10 mm plate - I-prep diamondspark S 56 HP - UV 400

Parameters both sides :

- 3,2 mm
- wire feed speed: 2,5 mtr/min
- Amp: 550
- Volt: 31-32
- Welding speed: 75 cm/min
- Heat Input : 1.4 kJ/mm

diamondspark S 56 HP -UV 400

10 mm plate - 2 run


Welding parameters:

side 1:

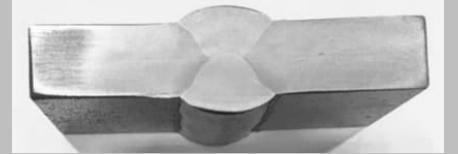
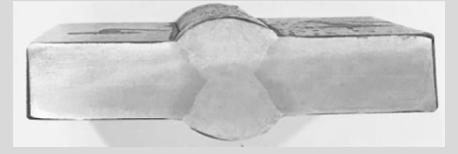
wire feed speed: 3.40 mt/min
Amp: 650
Volt: 34
Welding speed: 120 cm/min

side 2:

wire feed speed: 3.40 mt/min
Amp: 650
Volt: 35
Welding speed: 120 cm/min

No defects inside and good penetration.

- Reinforcement S1: 2 mm
- Reinforcement S2: 2mm



voestalpine

ONE STEP AHEAD.

diamondspark S 56 HP -UV 400

10 mm plate - 2 run - 4,0 mm - toughness

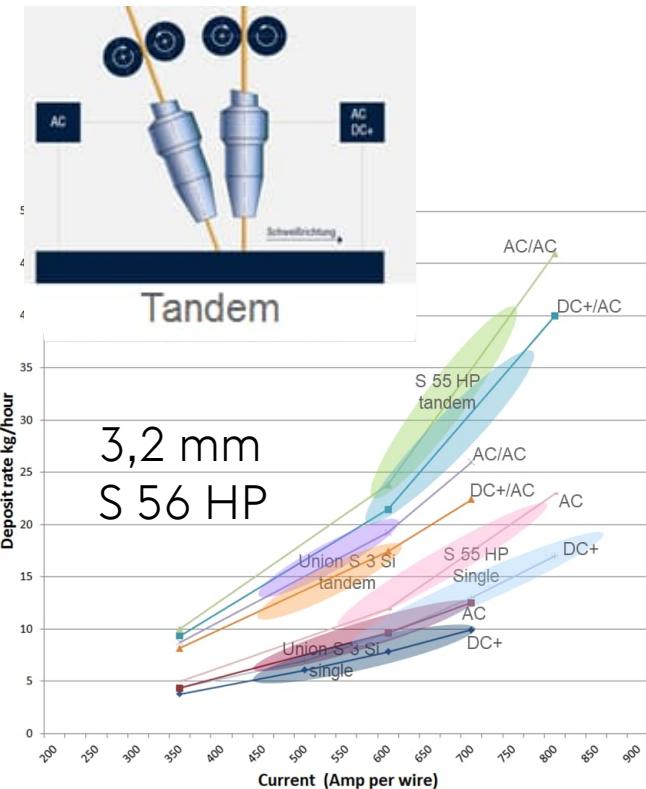
Current (amp)	Voltage (V)	Weld.speed (cm/min)	HI (kJ/mm)	t8/5 (sec)	I-preparation
600	31	80	1,40	29 sec	
700	33	90	1,54	35 sec	
Current	ISO-V (J) reduced specimen size 7,5mm				
	-20°C	-40°C	-60°C		
600	123-107-115	101-81-110	67-57-27		
700	118-106-114	87-92-69	39-46-43		

Example : two-run - 6 mm plate - I-prep diamondspark S 56 HP - UV 400

Parameters both sides :

- 3,2 mm
- wire feed speed: 2.50 mt/min
- Amp: 550
- Volt: 30-31
- Welding speed: 95 cm/min
- Heat input : 1.0 KJ/mm

Multi-wire


Multi-wire diamondspark S 56 HP

Suitable for multi-wire configurations, like

- Twin arc (2x2,4 mm – 1 power source)
- Tandem (2 power sources)
- Triple wire (3 power sources)

Similar increase in deposition rate

Mostly necessary to increase also welding speed

Increase deposition rate without investment

Possible investment in equipment to get increased deposition rate	Alternative without investment in equipment)
Single wire 1x 4 mm ; 1x 5/32"	Tandem (AC/DC+ ; 2x 4,0 mm ; 2x 5/32") ??
Single wire 1x 4 mm ; 1x 5/32"	Long stick out + special power source (AC) ??
Tandem 2x 4 mm ; 2x 5/32"	Triple (3x4 mm ; 3x 5/32") ??
Single wire 1x 4mm ; 1x 5/32"	Special proces (twin-arc + cold wire ; 3 x 2,5 mm ; 3x 3/32")??
Triple 3x 4 mm; 3x 5/32"	4x 4,0 mm ; 4x 5/32" ??
Special proces (twin-arc + cold wire in between) solid	??
	Apply diamondspark S 55(56) HP 3x 2,4 mm ; 3x 3/32" - with present equipment

Bead cross section (mm²)

- High(er) deposition rate
- Apply also increased welding speed => to avoid :
 - too large cross section (weld preparation geometry)
 - higher risk for lack of fusion

Product range seamless SAW

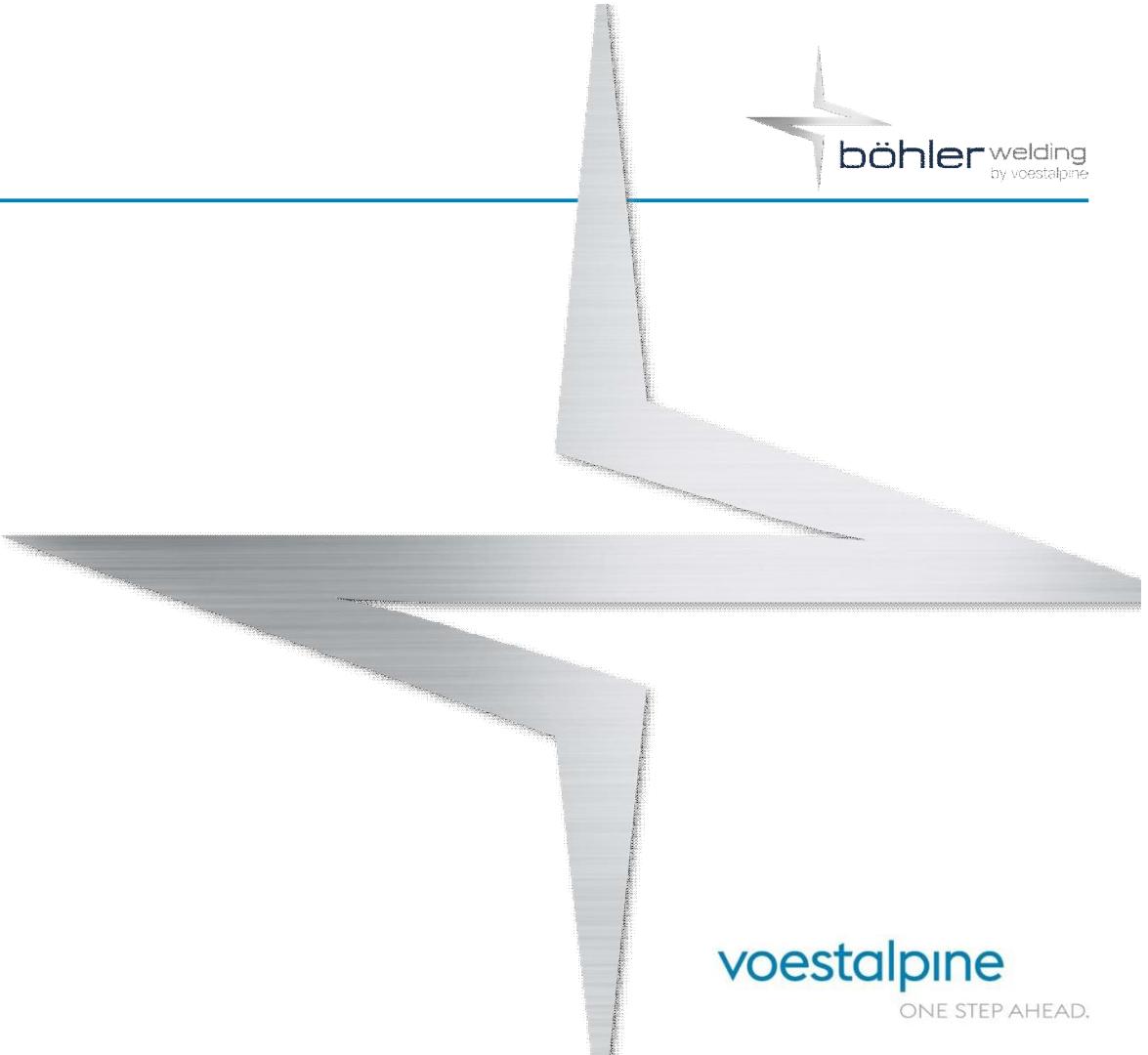
Seamless SAW - Product range Combinatons (high strength)

	UV 306 AR BI~0,6	UV 400 AB BI~1,5-1,8	UV 418 TT FB BI~2,7	UV 420 TTR-C FB BI~2,6	UV 422 TT-LH FB ; FB~2,5
diamondspark S 55 HP	S 50 4 / F7A5		S 46 6 / F7A8P8		
diamondspark S 56 HP		S 46 6 / F7A8			
diamondspark S NiCu1	S 46 4 / F8A5	S 46 6 / F7A8			
diamondspark S 550 HP		S 50 6 / F9A8	S 50 6 / F9A8	S 50 6 / F9AP8	S 50 6 / F9A8
diamondspark S 700 HP			S 69 6 / F11A10		S 69 6 / F11A10
diamondspark S 770			S 69 6 / F11A6		S 69 6 / F12A6
diamondspark S 900 HP					S 89 6 / F13A8
diamondspark S 960 HP					(S 96 5 / F14A8)

Resume

Resume

Possibility for reduction in cost and project lead time by


- Relative simple WPS and simple solution, with low / without investment
- Increased deposit rate and/or welding speed
- Low risk on failing mechanical properties
- High process reliability leading to
 - Low defect ratio
 - Low down-time

Project-lead-time-fulfillment might be key factor to

- Reduce risk for penalties
- Win projects

Thank you!

voestalpine
ONE STEP AHEAD.

Disclaimer

“Any and all information provided in these documents serve for general basic welding information and demonstration purpose only. By no means, no claims of completeness, accuracy or correctness can be raised regarding of such information as provided herein. The author reserves its right to alter, amend or change the content of the information portfolio upon its sole discretion.”